Популярно о работах Якова Синая, лауреата Абелевской премии 2014 года << Scisne?

Опубликовано: 09.01.2018

Популярно о работах Якова Синая, лауреата Абелевской премии 2014 года, рассказывает профессор мехмата МГУ и матфака НИУ ВШЭ, профессор Корнелльского университета (США), вице-президент Московского математического общества, ректор московского Независимого университета Юлий Ильяшенко.

Математик Яков Синай — лауреат Абелевской премии 2014 года

26 марта в Осло президент Норвежской академии наук объявил имя лауреата Премии Абеля за 2014 год — аналога Нобелевской премии по математике. Им стал выдающийся ученый, представляющий Россию и США, Яков Григорьевич Синай. Премия эта названа в честь математика Нильса Хенрика Абеля. Норвежская академия наук и литературы выбирает ее лауреата комитетом из пяти крупнейших международных математиков. С 2003 года триумфаторами этой премии становятся те ученые, работы которых обладают чрезвычайной глубиной и оказали существенное влияние на эту область науки. Яков Григорьевич Синай получил ее «за фундаментальный вклад в изучение динамических систем, эргодическую теорию и математическую физику».

Школа Колмогорова

— Так почему именно Яков Синай признан лауреатом самой престижной премии в области математики?

— Яков Григорьевич является одним из самых знаменитых учеников Андрея Николаевича Колмогорова. В свою очередь, Андрей Николаевич — ученик основателя московской математической школы Николая Николаевича Лузина. Колмогоров — один из самых замечательных не только математиков, но и ученых ХХ века. Он вырастил свою громадную школу, в которой кроме Синая прославились многие академики и профессора. Назову лишь одного из них — Владимира Игоревича Арнольда. Синай в свою очередь создал школу, о которой я потом скажу несколько слов.

Андрей Николаевич Колмогоров внес фундаментальный вклад в самые разные области математики. Особенно знамениты его труды по теории вероятностей и динамическим системам. На стыке этих двух областей с математической физикой и работает всю жизнь Яков Григорьевич.

Теория вероятностей и теория динамических систем

— Чем занимаются две эти науки?

— Теория вероятностей изучает случайные события. Например, вы подбрасываете монетку, и случайно выпадают орел или решка. Один из главных результатов теории вероятностей — закон больших чисел, доказанный Колмогоровым. Он состоит в том, что в среднем число выпаданий орла или решки при большом числе испытаний будет одинаковым. То, что я сказал, не является строгой математической формулировкой. Одно из главных достижений Колмогорова состояло в том, что этому наивному утверждению он придал точный математический смысл, а затем доказал то, что получилось.

Теория дифференциальных уравнений или динамических систем на первый взгляд занимается противоположными задачами. Она исследует так называемые детерминированные, вполне предсказуемые процессы. Ньютон был первым, кто понял, что дифференциальные уравнения описывают большинство процессов, происходящих в природе с течением времени. Например, полет планет, а также движение молекул. С помощью созданной им теории дифференциальных уравнений Ньютон описал вращение планет вокруг Солнца и, в частности, доказал открытые ранее на опыте законы Кеплера. Например, то, что все планеты движутся вокруг Солнца по плоским орбитам, имеющим форму эллипса.

В конце ХVIII века математики начали понимать, что дифференциальные уравнения обладают так называемым свойством единственности решений. Если мы знаем в какой-то момент времени состояние процесса (например, положение планеты и ее скорость), то мы можем предсказать в бесконечное время в будущем, а также реконструировать на бесконечное время в прошлом судьбу этой планеты, ее полет, траекторию.

Более того, Лаплас понял, что этот же принцип детерминизма относится не только к движению планет, но и к движению микроскопических объектов. Например, молекул.

— То есть это универсальное свойство?

— Да. Это универсальное свойство единственности. И в своем трактате о теории вероятностей Лаплас написал: «Ум, которому были бы известны для какого-либо данного момента все силы, одушевляющие природу, и относительное положение всех ее составных частей, если бы вдобавок он оказался достаточно обширным, чтобы подчинить эти данные анализу, обнял бы в одной формуле движение величайших тел Вселенной наравне с движениями легчайших атомов; не осталось бы ничего, что было бы для него недостоверно, и будущее, так же как и прошедшее, предстало бы пред его взором».

Это гораздо больше, чем математический результат. Это философия, которая осмысливает развитие всей Вселенной вокруг нас. Философия, несмотря на патетику Лапласа, довольно унылая. Она состоит в том, что мы живем в мире, в котором все предсказано. Если бы некий великий ум знал начальные скорости и положения всех молекул и всех остальных тел во Вселенной, он бы спокойно предсказал прошлое и восстановил будущее.

— Но он не знает.

— Но он не знает. А главное — последующее развитие науки эту философию опровергло. В этой области и работает Яков Григорьевич Синай.

В ХIХ столетии казалось, что нет более противоположных ветвей математики, чем дифференциальные уравнения и теория вероятностей. Но развитие математики в ХХ веке показало, что это — две тесно переплетенные области. И в понимание этих связей Синай внес решающий вклад. Впрочем, об этом чуть позже.

Прежде чем перейти к рассказу об этих связях, которые изучает так называемая эргодическая теория, я хочу сказать о некоторых юношеских работах Синая.

Ранние работы Синая